English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2878/3796 (76%)
造訪人次 : 3947011      線上人數 : 385
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於MUIR管理 到手機版


    請使用永久網址來引用或連結此文件: http://ir.meiho.edu.tw/ir/handle/987654321/3787


    題名: Applying data mining techniques for discovering association rules
    作者: Huang, Mu-Jung
    Sung, Hsiu-Shu
    Hsieh, Tsu-Jen
    Wu, Ming-Cheng
    Chung, Shao-Hsi
    貢獻者: 經營管理學院
    關鍵詞: Data mining · association rule mining (ARM)
    chronic diseases
    日期: 2019
    上傳時間: 2019-12-04T01:48:30Z (UTC)
    摘要: Data mining has become a hot research topic, and how to mine valuable knowledge from such huge volumes of data remains an open problem. Processing huge volumes of data presents a challenge to existing computation software and hardware. This study proposes a model using Association Rule Mining (ARM) which is a kind of data mining techniques for discovering association rules of chronic diseases from the enormous data that are collected continuously through health examination and medical treatment. This study makes three critical contributions: (1) it suggests a systematical model of exploring huge volumes of data using ARM, (2) it shows that helpful implicit rules are discovered through data mining techniques, and (3) the results proved that the proposed model can act as an expert system for discovering useful knowledge from huge volumes of data for the references of doctors and patients to the specific chronic diseases prognosis and treatments.
    顯示於類別:[企業管理系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Applying data mining techniques for discovering association rules.pdf491KbAdobe PDF0檢視/開啟


    在MUIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋